Lecture No 18
Open Closed and Queue Models

Open, Closed and Mixed Queue
Models

+ Certain systems can behave as open
queue up to a certain queue size and then
behave as closed queues.

+ Such systems are called Mixed Queue
systems

Open Queue (Flores) Memory
Model

» Open queue model is not very suitable for
processor memory interaction but its most
simple model and can be used as initial
guess to partition of memory modules.

» This model was originally proposed by
flores using M/D/1 queue but Mg/D/1
queue is more appropriate.

Open Queue (Flores) Memory
Model

* The total processor request rate Asis
assumed to split uniformly over m
modules.

+ S0 request rate at module A = As /m

o Since = 1/Tc (Tcis memory cycle time)
v S0p=A/P=(As/m).Tc

+ We can now use Mg /D/1 model to

determine Tw and Qo (Per module buffer
size)

Open Queue (Flores) Memory
Model

+ Design Steps:

— Find peak processor instruction execution rate
in MIPS.

— MIPS * refrences / instruction = MAPS

— Choose m so that p = 0.5 and m=2%(k an
integer)

— Calculate Tw and Qo.

— Total memory access time = Tw +Ta

— Average open Q size =m .Q0

Open Queue (Flores) Memory
Model

+ Example:

» Design a memory system for a processor
with peak performance of 50 MIPS and
one instruction decoded per cycle.

Assume memory module has Ta =200 ns
and Tc =100 ns. And 1.5 references per
instruction.

Open Queue (Flores) Memory
Model

+ Solution:

« MAPS =1.5*50 = 75 MAPS

* Nowp=As/m*Tc

* Sop=75x10x1/mx0.1x10°=75/m

* Now choose mso thatp=0.5

o [fm =16 then p=10.47

» For Ma/D/1 model Tw = 1/A* (p>- pp)/ 2(1-p)

=Tc* (p—-1/m)/ 2 (1-p)
=38 ns

Open Queue (Flores) Memory
Model

» Total memory access time = Ta + Tw =238 ns
+ Qu=p?-pp/2(1-p)=0.18
» So totalmean Qsize= mxQo=16x.18=3

Closed Queues

* Closed queue model assumes that arrival
rate is immediately affected by service
contention.

* Let A be the offered arrival rate and Aa is the
achieved arrival rate.

+ Let p is the occupancy for A and pa for Aa .
* Now (p - pa) is the no of items in closed Qc.

Closed Queues

+ Suppose we have an n, m system in overall
stability.

+ Average Q size (including items in service)
denoted by N = n/m and

closed Q size Qc =n/m-pa =p - pa where
pa Is achieved occupancy.

From discussion on open queue we know that
Average Q size N=Q, + p

Closed Queues

» Since in closed Queue Achieved Occupancy
is pa, and for M/D/1, Q, is p? /2(1- p), so we
have

N = n/m = pa? [2(1- pa) + pa
Solving for pa

we have pa = (1+n/m) —j(n/m)2 +1
Bandwidth B (m,n) =m. pa so

B (m,n) = m+n -nZ+m?

This solution is called the Asymptotic Solution

Closed Queues

+ Since N =n/m is the same as open Queue
occupancy p. We can say

pa = (1+p) —jp? +1

Simple Binomial Model: While deriving
asymptotic solution , we had assumed m and
n to be very large and used M/D/1 model.

For small n or m the binomial rather than
poisson is a better characterization of the
request distribution .

Binomial Approximation
+ Substituting queue size for Mg/D/1

N =n/m = (pa?- ppa)/ 2(1- pa) + pa
Since Processor makes one request per Tc
p = 1/m (prob of request to one module)
Substituting this and solving for pa
pa = 1+n/m - 1/2m —(1+n/m-1/2m}2 -2n/m)
and B(m,n)=m. pa

B(m,n) = m#n-1/2 7(m+n -112)? - 2mn

Binomial Approximation

+ Binomial approximation is useful whenever we
have

— Simple processor memory configuration (a
binomial arrival distribution)

- n>1andm>=1.

— Request response hehavior: where processor
makes exactly n requests per Tc

The (0) Binomial Model

+ |f simple processor is replaced with a pipelined
processor with buffer (I-buffer,register set ,
cache etc) the simple binomial model may falil.

+ Simple binomial model can not distinguish
between single simple processor making one
request per Tc with probability =1, and two
processors each making 0.5 requests per Tc.

* |In second case there can be contention and
both processors may make request with
varying probability.

The (0) Binomial Model

* To correct this 0 binomial model is used.

+ Here the probability of a processor access
during Tcis not 1 butd,sop=0/m

+ Substituting this we get a more general
definition

B(m,n5) = m+n~312~(m +n-5/2-2mn

The (0) Binomial Model

» This model is useful in many processor
designs where the source is buffered or makes
requests on a statistical basis

+ |f nis the mean request rate and z is the no. of
sources, then & = n/z

The (0) Binomial Model

* This model can be summarized as follows:
— Processor makes n requests per Tc.

— Each processor request source makes a request witr
probability 9.

Offered bandwidth per Tc Bw = n/Tc = mA

Achieved Bandwidth = B(m,n,d) per Tc.

Achieved bandwidth per second

=B(m,n,0)/ Tc =m Aa.

Achieved Performance = Aa /A * (offered performance)

Using the 6- Binomial Performance
Model

+ Assume a processor with cycle time of 40ns.
Memory request each cycle are made as per
following
—Prob (IF in any cycle) = 0.6
—Prob (DF in any cycle) = 0.4
—Prob (DS in any cycle) = 0.2
— Execution rate is 1 CPI., Ta = 120ns, Tc =120 ns

Determine Achieved Bandwidth / Achieved
Performance (Assuming Four way Interleaving)

Using the 6- Binomial Performance
Model

» M=4, Compute n:(Mean no of requests per Tc)
S0 n = requests/per cycle x cycles per Tc

= (0.6+0.4+0.2) x 120/40

= 3.6 requests / Tc
Compute d: z = ¢p x Tc/ processor cycle time
Where cp is no of processor sources.
S0z=3x120/40=9
S00=n/z=36/9=04

Using the 6- Binomial Performance
Model

Compute B(m,n,0):
B(m,nd)=m+n-4§/2 —J(m +n-9/2)°-2mn
= 2.3 Requests/ Tc

So processor offers 3.6 requests each Tc but
memory system can deliver only 2.3. this has
direct effect on processor performance.

Performance achieved = 2.3/3.6 (offered Perf.)
At 1cpi at 40 ns cycle offered perf = 25 MIPS.
Achieved Performance = 2.3/3.6 (25) = 16MIPS.

Comparison of Memory Models

» Each model is valid for a particular type of
processor memory interaction.

* Hellerman’s model represents simplest
type of processor. Since processor can not
skip over conflicting requests and has no
buffer, it achieves lowest bandwidth.

+ Strecker's model anticipates out of order
requests but no queues. Its applicable to
multiple simple un buffered processors.

